Skip to content

Neo4jClient

NODE_VAR module-attribute ¤

NODE_VAR = 'doc'

Default variable name used in Cypher queries to match and return Documents, e.g. match(doc:Document) where doc.id = $id return doc where doc is a variable name.

DEFAULT_NEO4J_URI module-attribute ¤

DEFAULT_NEO4J_URI = 'bolt://localhost:7687'

Default URI to connect to neo4j instance, e.g. a local DB running in Docker container.

DEFAULT_NEO4J_DATABASE module-attribute ¤

DEFAULT_NEO4J_DATABASE = 'neo4j'

Default Neo4j database name to connect to if not provided.

DEFAULT_NEO4J_USERNAME module-attribute ¤

DEFAULT_NEO4J_USERNAME = 'neo4j'

Default Neo4j username to be used for authentication with Neo4j. Used to simplify local development.

DEFAULT_NEO4J_PASSWORD module-attribute ¤

DEFAULT_NEO4J_PASSWORD = 'neo4j'

Default Neo4j password to be used for authentication with Neo4j. Used to simplify local development.

Neo4jRecord module-attribute ¤

Neo4jRecord = Dict[str, Any]

Type alias for data items returned from Neo4j queries

Neo4jSessionConfig module-attribute ¤

Neo4jSessionConfig = Mapping[str, Any]

Generic dictionary for Session Configuration

Neo4jDriverConfig module-attribute ¤

Neo4jDriverConfig = Mapping[str, Any]

Generic dictionary for Driver Configuration

Neo4jTransactionConfig module-attribute ¤

Neo4jTransactionConfig = Mapping[str, Any]

Generic dictionary for Transaction Configuration

VectorStoreIndexInfo dataclass ¤

Neo4j vector index information retrieved from the database.

See Create and configure vector indexes documentation to learn more about data representing index configuration.

Attributes:

  • index_name (str) –

    The name of the index.

  • node_label (str) –

    Name of Neo4j node which contains embeddings which are indexed.

  • property_key (str) –

    Name of the property of the node which contains vectors.

  • dimensions (int) –

    Dimension of embedding vector.

  • similarity_function (str) –

    Configured vector similarity function.

Source code in src/neo4j_haystack/client/neo4j_client.py
@dataclass
class VectorStoreIndexInfo:
    """Neo4j vector index information retrieved from the database.

    See [Create and configure vector indexes](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-create)
    documentation to learn more about data representing index configuration.

    Attributes:
        index_name: The name of the index.
        node_label: Name of Neo4j node which contains embeddings which are indexed.
        property_key: Name of the property of the node which contains vectors.
        dimensions: Dimension of embedding vector.
        similarity_function: Configured vector similarity function.
    """

    index_name: str
    node_label: str
    property_key: str
    dimensions: int
    similarity_function: str

Neo4jClientConfig dataclass ¤

Provides extensive configuration options in order to communicate with Neo4j database.

It combines several configuration levels for each entity used by python driver to communicate with a database:

Developers can pick up configuration properties for each entity (e.g. session) which will be applied during transaction invocations. For example, driver_config={"connection_timeout": 30} will set amount of time in seconds to wait for a TCP connection to be established.

username and password are optional because developer can choose to provide alternative authentication options using driver_config by setting Driver Auth Details.

Attributes:

  • url (Optional[str]) –

    Database connection string, see https://neo4j.com/docs/api/python-driver/current/api.html#uri.

  • database (Optional[str]) –

    Database name to connect.

  • username (Optional[str]) –

    Username to authenticate with the database.

  • password (Optional[str]) –

    Password credential for the given username.

  • driver_config (Neo4jDriverConfig) –

    Additional driver configuration.

  • session_config (Neo4jSessionConfig) –

    Additional session configuration.

  • transaction_config (Neo4jTransactionConfig) –

    Additional transaction configuration (e.g. timeout)

  • use_env (Optional[bool]) –

    If True the following Driver attributes will be assigned from respective environment variables:

    >>> url = os.getenv("NEO4J_URI")
    >>> database = os.getenv("NEO4J_DATABASE")
    >>> username = os.getenv("NEO4J_USERNAME")
    >>> password = os.getenv("NEO4J_PASSWORD")
    

Raises:

  • ValueError

    In case conflicting auth credentials are provided - choose either username/password combination or driver_config.auth.

Source code in src/neo4j_haystack/client/neo4j_client.py
@dataclass
class Neo4jClientConfig:
    """
    Provides extensive configuration options in order to communicate with Neo4j database.

    It combines several configuration levels for each entity used by python driver to communicate with a database:

    - [Driver Configuration][neo4j_haystack.client.neo4j_client.Neo4jDriverConfig]
    - [Session Configuration][neo4j_haystack.client.neo4j_client.Neo4jSessionConfig]
    - [Transaction Configuration][neo4j_haystack.client.neo4j_client.Neo4jTransactionConfig]

    Developers can pick up configuration properties for each entity (e.g. session) which will be applied during
    transaction invocations. For example, ``driver_config={"connection_timeout": 30}`` will set amount of time in
    seconds to wait for a TCP connection to be established.

    `username` and `password` are optional because developer can choose to provide alternative
    authentication options using `driver_config` by setting [Driver Auth Details](https://neo4j.com/docs/api/python-driver/current/api.html#auth).

    Attributes:
        url: Database connection string, see https://neo4j.com/docs/api/python-driver/current/api.html#uri.
        database: Database name to connect.
        username: Username to authenticate with the database.
        password: Password credential for the given username.
        driver_config: Additional driver configuration.
        session_config: Additional session configuration.
        transaction_config: Additional transaction configuration (e.g. ``timeout``)
        use_env: If `True` the following Driver attributes will be assigned from respective environment variables:
            ```py
            >>> url = os.getenv("NEO4J_URI")
            >>> database = os.getenv("NEO4J_DATABASE")
            >>> username = os.getenv("NEO4J_USERNAME")
            >>> password = os.getenv("NEO4J_PASSWORD")
            ```

    Raises:
        ValueError: In case conflicting auth credentials are provided - choose either username/password combination
            or `driver_config.auth`.
    """

    url: Optional[str] = field(default=DEFAULT_NEO4J_URI)
    database: Optional[str] = field(default=DEFAULT_NEO4J_DATABASE)
    username: Optional[str] = field(default=DEFAULT_NEO4J_USERNAME)
    password: Optional[str] = field(default=DEFAULT_NEO4J_PASSWORD)

    driver_config: Neo4jDriverConfig = field(default_factory=dict)
    session_config: Neo4jSessionConfig = field(default_factory=dict)
    transaction_config: Neo4jTransactionConfig = field(default_factory=dict)

    use_env: Optional[bool] = field(default=False)
    auth: Optional[Auth] = field(default=None)

    def __post_init__(self):
        if self.use_env:
            self.url = os.getenv("NEO4J_URI", self.url)
            self.database = os.getenv("NEO4J_DATABASE", self.database)
            self.username = os.getenv("NEO4J_USERNAME", self.username)
            self.password = os.getenv("NEO4J_PASSWORD", self.password)

        if self.username and self.password:
            self.auth = (self.username, self.password)

        if not self.url:
            raise ValueError("The `url` attribute is mandatory to connect to database.")

        if not self.auth:
            raise ValueError("Please provide either (`username`, `password`) or `auth` fields for authentication.")

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes client configuration to a dictionary.
        """
        data = default_to_dict(
            self,
            url=self.url,
            database=self.database,
            username=self.username,
            password=self.password,
            driver_config=self.driver_config,
            session_config=self.session_config,
            transaction_config=self.transaction_config,
            use_env=self.use_env,
        )

        return data

    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> "Neo4jClientConfig":
        """
        Deserializes client configuration from a dictionary.
        """
        return default_from_dict(cls, data)

to_dict ¤

to_dict() -> Dict[str, Any]

Serializes client configuration to a dictionary.

Source code in src/neo4j_haystack/client/neo4j_client.py
def to_dict(self) -> Dict[str, Any]:
    """
    Serializes client configuration to a dictionary.
    """
    data = default_to_dict(
        self,
        url=self.url,
        database=self.database,
        username=self.username,
        password=self.password,
        driver_config=self.driver_config,
        session_config=self.session_config,
        transaction_config=self.transaction_config,
        use_env=self.use_env,
    )

    return data

from_dict classmethod ¤

from_dict(data: Dict[str, Any]) -> Neo4jClientConfig

Deserializes client configuration from a dictionary.

Source code in src/neo4j_haystack/client/neo4j_client.py
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "Neo4jClientConfig":
    """
    Deserializes client configuration from a dictionary.
    """
    return default_from_dict(cls, data)

Neo4jClient ¤

Neo4j Python Driver wrapper to run low level database transactions using Cypher queries. It abstracts away Neo4j related details from Neo4jDocumentStore so that database related interactions are encapsulated in a single place.

Neo4jClient can be created with a number of configuration options represented by the Neo4jClientConfig data class. The configuration applied when connecting to a database or running transactions.

Attributes:

  • _config

    Neo4j configuration options.

  • _driver

    An instance of neo4j.Driver which is used to start a session for transaction execution.

  • _filter_converter

    Instance of Neo4jQueryConverter which converts parsed Metadata filters to Cypher queries.

Source code in src/neo4j_haystack/client/neo4j_client.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
class Neo4jClient:
    """
    Neo4j Python Driver wrapper to run low level database transactions using Cypher queries. It abstracts away Neo4j
    related details from `Neo4jDocumentStore` so that database related interactions are encapsulated in a single
    place.

    `Neo4jClient` can be created with a number of configuration options represented by the `Neo4jClientConfig` data
    class. The configuration applied when connecting to a database or running transactions.

    Attributes:
        _config: Neo4j configuration options.
        _driver: An instance of [neo4j.Driver][] which is used to start a session for transaction execution.
        _filter_converter: Instance of `Neo4jQueryConverter` which converts parsed Metadata filters to Cypher
            queries.
    """

    def __init__(self, config: Neo4jClientConfig):
        self._config = config

        if not config.url:
            raise ValueError("`Neo4jClientConfig.url` is mandatory attribute when trying to connect to Neo4j database.")

        self._driver = GraphDatabase.driver(config.url, auth=config.auth, **config.driver_config)
        self._filter_converter = Neo4jQueryConverter(NODE_VAR)

    def delete_nodes(self, node_label: str, filter_ast: Optional[AST] = None) -> None:
        """
        Deletes nodes with with given label and filters using [DELETE](https://neo4j.com/docs/cypher-manual/current/clauses/delete/)
            Cypher clause.

        Args:
            node_label: The name of the label to delete (e.g. ``"Document"``)
            filter_ast: Metadata filters to delete only specific nodes which match filtering conditions.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction) -> None:
            where_clause, where_params = self._where_clause(filter_ast)
            tx.run(
                f"""
                MATCH ({NODE_VAR}:`{node_label}`)
                {where_clause}
                DETACH DELETE {NODE_VAR}
                """,
                parameters={**where_params},
            )

        with self._begin_session() as session:
            session.execute_write(_mgt_tx)

    def create_index(
        self,
        index_name: str,
        label: str,
        property_key: str,
        dimension: int,
        similarity_function: SimilarityFunction,
    ) -> None:
        """
        Creates a new vector index in database for a given node label and vector specific attributes (e.g. dimension,
        similarity function etc). See documentation for the index creation procedure \
        [db.index.vector.createNodeIndex](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_createNodeIndex)

        Args:
            index_name: The unique name of the index.
            label: The node label to be indexed (e.g. ``"Document"``).
            property_key: The property key of a node which contains embedding values.
            dimension: Vector embedding dimension (must be between 1 and 2048 inclusively).
            similarity_function: case-insensitive values for the vector similarity function:
                ``cosine`` or ``euclidean``.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction) -> None:
            tx.run(
                """
                CALL db.index.vector.createNodeIndex(
                    $index_name,
                    $label,
                    $property_key,
                    toInteger($vector_dimension),
                    $similarity_function
                )
                """,
                index_name=index_name,
                label=label,
                property_key=property_key,
                vector_dimension=dimension,
                similarity_function=similarity_function,
            )

        with self._begin_session() as session:
            session.execute_write(_mgt_tx)

    def retrieve_vector_index(
        self,
        index_name: str,
        node_label: str,
        property_key: str,
    ) -> Optional[VectorStoreIndexInfo]:
        """
        Retrieves information about existing vector index.

        For more details and an example query on how to obtain existing indexes see \
        [Query a vector index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query).

        Args:
            index_name: The name of the vector index to retrieve.
            node_label: The label of the node configured as prt of vector index setup.
            property_key: The property key configured as part of vector index setup.

        Raises:
            Neo4jClientError: If more than one index found matching search criteria (same index name OR
                label+property combination).

        Returns:
            Data retrieved from the query execution or `None` if index was not found.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction) -> List[Record]:
            result = tx.run(
                """
                SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options
                WHERE type = 'VECTOR' AND
                (name = $index_name OR (labelsOrTypes[0] = $node_label AND properties[0] = $property_key))
                RETURN name, labelsOrTypes, properties, options
                """,
                index_name=index_name,
                node_label=node_label,
                property_key=property_key,
            )

            return list(result)

        with self._begin_session() as session:
            found_indexes = session.execute_write(_mgt_tx)

        if len(found_indexes) > 1:
            raise Neo4jClientError(
                "Failed to retrieve vector index from Neo4j."
                "There were several indexes found with a given search criteria: "
                f"$index_name='{index_name}' OR ($node_label='{node_label}' AND $property_key='{property_key}'). "
                "Please make sure the Neo4jDocumentStore points to an unambiguous vector index"
            )

        return self._vector_store_index_info(found_indexes[0]) if found_indexes else None

    def create_index_if_missing(
        self,
        index_name: str,
        label: str,
        property_key: str,
        dimension: int,
        similarity_function: SimilarityFunction,
    ):
        """
        Creates a vector index in case it does not exist in database.
        Uses same parameters as [create_index][neo4j_haystack.client.neo4j_client.Neo4jClient.create_index] \
            method.
        """

        existing_index = self.retrieve_vector_index(index_name, label, property_key)

        if not existing_index:
            logger.debug("Creating a new index(%s) as it is not present in the configured Neo4j database", index_name)
            self.create_index(index_name, label, property_key, dimension, similarity_function)

    def delete_index(self, index_name: str) -> None:
        """
        Removes index from Neo4j database.

        See Cypher manual on [Drop vector indexes](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-drop)

        Args:
            index_name: The name of the index to delete.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction) -> None:
            tx.run(f"DROP INDEX `{index_name}`")

        with self._begin_session() as session:
            session.execute_write(_mgt_tx)

    def update_embedding(self, node_label: str, embedding_field: str, records: List[Dict[str, Any]]) -> None:
        """
        Updates embedding on a number of ``Document`` nodes. It uses ``db.create.setNodeVectorProperty()`` procedure as
        a recommended update method. See more details in [Set a vector property on a node](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-set)

        Args:
            node_label: A node label to match (e.g. ``"Document"``).
            embedding_field: The name of the embedding field which stores embeddings (of type ``LIST<FLOAT>``) as part
                node properties.
            records: A list dictionary objects following the structure:
                ```python
                    [{
                        "id": "doc_id1", # id of the Document (node) to update
                        embedding_field: [0.8, 0.9, ...] # Embedding vector
                    }]
                ```
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction) -> None:
            tx.run(
                f"""
                WITH $records AS batch
                UNWIND batch as row
                MATCH ({NODE_VAR}:`{node_label}` {{id: row.id}})
                CALL db.create.setNodeVectorProperty({NODE_VAR}, '{embedding_field}', row.{embedding_field})
                RETURN {NODE_VAR}
                """,
                records=records,
            )

        with self._begin_session() as session:
            session.execute_write(_mgt_tx)

    def merge_nodes(self, node_label: str, embedding_field: str, records: List[Neo4jRecord]) -> ResultSummary:
        """
        Creates or updates a node in neo4j representing a Document with all properties. Nodes are matched by "id",
        if not found a new node will be created. See the following manuals:

        - [MERGE clause](https://neo4j.com/docs/cypher-manual/current/clauses/merge/)
        - [Settings properties using a map](https://neo4j.com/docs/cypher-manual/current/clauses/set/#set-setting-properties-using-map)
        - [db.create.setNodeVectorProperty](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_create_setNodeVectorProperty)

        Args:
            node_label: The label of the node to match (e.g. "Document").
            embedding_field: The name of the embedding field which stores embeddings (of type ``LIST<FLOAT>``) as part
                of node properties. Embeddings (if present) will be updated/set by ``db.create.setNodeVectorProperty()``
                procedure - `embedding_field` is excluded from ``SET`` Cypher clause by using map projections.
            records: A list of [Documents](https://docs.haystack.deepset.ai/reference/primitives-api#document) \
                converted to dictionaries, with ``meta`` attributes included.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction):
            result = tx.run(
                f"""
                WITH $records AS batch
                UNWIND batch as row
                MERGE ({NODE_VAR}:`{node_label}` {{id: row.id}})
                SET {NODE_VAR} += row{{.*, {embedding_field}: null}}
                WITH {NODE_VAR}, row
                CALL {{ WITH {NODE_VAR}, row
                    MATCH({NODE_VAR}:`{node_label}` {{id: row.id}}) WHERE row.embedding IS NOT NULL
                    CALL db.create.setNodeVectorProperty({NODE_VAR}, '{embedding_field}', row.{embedding_field})
                }}
                """,
                records=records,
            )
            summary = result.consume()
            return summary

        with self._begin_session() as session:
            return session.execute_write(_mgt_tx)

    def count_nodes(self, node_label: str, filter_ast: Optional[AST] = None) -> int:
        """
        Counts number of nodes matching given label and optional filters.

        Args:
            node_label: The label of the node to match (e.g. ``"Document"``).
            filter_ast: The filter syntax tree (parsed metadata filter) to narrow down counted results.

        Returns:
            Number of found nodes.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction):
            where_clause, where_params = self._where_clause(filter_ast)
            result = tx.run(
                f"""
                MATCH ({NODE_VAR}:`{node_label}`)
                {where_clause}
                RETURN count(*) as count
                """,
                parameters={**where_params},
            )
            return result.single(strict=True).value()

        with self._begin_session() as session:
            return session.execute_read(_mgt_tx)

    def find_nodes(
        self,
        node_label: str,
        filter_ast: Optional[AST] = None,
        skip_properties: Optional[List[str]] = None,
        fetch_size: int = 1000,
    ) -> Generator[Neo4jRecord, None, None]:
        """
        Search for nodes matching a given label and metadata filters.

        Args:
            node_label: The label of the nodes to match (e.g. ``"Document"``).
            filter_ast: The filter syntax tree (parsed metadata filter) for search.
            skip_properties: Properties we would like not to return as part of data payload. Is uses map projection
                Cypher syntax, e.g. `:::cypher doc{.*, embedding: null}` - such construct will make sure ``embedding``
                is not returned back in results.
            fetch_size: Controls how many records are fetched at once from the database which helps with batching
                process.

        Returns:
            Found records matching search criteria.
        """
        where_clause, where_params = self._where_clause(filter_ast)
        query = f"""
            MATCH ({NODE_VAR}:`{node_label}`)
            {where_clause}
            RETURN {NODE_VAR}{self._map_projection(skip_properties)}
            """

        for record in self.query_nodes(query=query, parameters={**where_params}, fetch_size=fetch_size):
            yield cast(Neo4jRecord, record.data().get(NODE_VAR))

    def query_nodes(
        self,
        query: str,
        parameters: Optional[Dict[str, Any]] = None,
        fetch_size: int = 1000,
    ) -> Generator[Record, None, None]:
        """
        Runs a given Cypher `query`. The implementation is based on ``Unmanaged Transactions``
        for greater control and possibility to ``yield`` results as soon as those are fetched from database. The Neo4j
        python driver internally manages a buffer which replenished while records are being consumed thus making sure we
        do not store all fetched records in memory. That greatly simplifies batching mechanism as it is implemented by
        the buffer. See more details about how python driver implements \
        [Explicit/Unmanaged Transactions](https://neo4j.com/docs/api/python-driver/current/api.html#explicit-transactions-unmanaged-transactions)

        Note:
            Please notice results are yielded while read transaction is still open. That should impact your choice of
            transaction timeout setting, see \
                [Neo4jClientConfig][neo4j_haystack.client.neo4j_client.Neo4jClientConfig].

        Args:
            query: Cypher query to run in Neo4j.
            parameters: Query parameters which can be used as placeholders in the `query`.
            fetch_size: Controls how many records are fetched at once from the database which helps with batching
                process.

        Returns:
            Records containing data specified in ``RETURN`` Cypher query statement.
        """
        with self._begin_session(fetch_size=fetch_size) as session:
            with session.begin_transaction(
                metadata=self._config.transaction_config.get("metadata"),
                timeout=self._config.transaction_config.get("timeout"),
            ) as tx:
                try:
                    result: Result = tx.run(
                        query,
                        parameters=parameters,
                    )
                    yield from result
                finally:
                    tx.close()

    def query_embeddings(
        self,
        index: str,
        top_k: int,
        embedding: List[float],
        filter_ast: Optional[AST] = None,
        skip_properties: Optional[List[str]] = None,
        vector_top_k: Optional[int] = None,
    ) -> List[Neo4jRecord]:
        """
        Query a vector index and apply filtering using `WHERE` clause on results returned by vector search.
        See the following documentation for more details:

        - [Query a vector index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query)
        - [db.index.vector.queryNodes()](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_queryNodes)

        Args:
            index: Refers to the unique name of the vector index to query.
            top_k: Number of results to return from vector search.
            embedding: The query vector (a ``LIST<FLOAT>``) in which to search for the neighborhood.
            filter_ast: Additional filters translated into `WHERE` Cypher clause by \
                [Neo4jQueryConverter][neo4j_haystack.metadata_filter.Neo4jQueryConverter]
            skip_properties: Properties we would like **not** to return as part of data payload. Is uses map projection
                Cypher syntax, e.g. `:::cypher doc{.*, embedding: null}` - such construct will make sure `embedding` is
                not returned back in results.
            vector_top_k: If provided `vector_top_k` is used instead of `top_k` in order to increase number of
                results (nearest neighbors) from vector search. It makes sense when filters (`filter_ast`) could
                further narrow down vector search result. Only `top_k` number of records will be returned back thus
                `vector_top_k` should be preferably greater than `top_k`.
        Returns:
            An ordered by score `top_k` nodes found in vector search which are optionally filtered using
                ``WHERE`` clause.
        """

        score_property = "score"

        if vector_top_k and vector_top_k < top_k:
            logger.warning(
                "Make sure 'vector_top_k'(=%s) is greater than 'top_k'(=%s) parameter. Using 'top_k' instead",
                vector_top_k,
                top_k,
            )
            vector_top_k = top_k

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction) -> List[Record]:
            where_clause, where_params = self._where_clause(filter_ast)
            result = tx.run(
                f"""
                CALL db.index.vector.queryNodes($index, $vector_top_k, $embedding)
                YIELD node as {NODE_VAR}, {score_property}
                MATCH ({NODE_VAR}) {where_clause}
                RETURN {NODE_VAR}{self._map_projection(skip_properties)}, {score_property}
                ORDER BY {score_property} DESC LIMIT $top_k
                """,
                parameters={
                    "index": index,
                    "top_k": top_k,
                    "embedding": embedding,
                    "vector_top_k": vector_top_k or top_k,
                    **where_params,
                },
            )
            return list(result)

        with self._begin_session() as session:
            records = session.execute_read(_mgt_tx)

        return [{**record.value(NODE_VAR), score_property: record.value("score")} for record in records]

    def execute_write(
        self,
        query: str,
        parameters: Optional[Dict[str, Any]] = None,
    ) -> Tuple[ResultSummary, List[Dict[str, Any]]]:
        """
        Runs an arbitrary write Cypher query with parameters.

        Args:
            query: Cypher query to run in Neo4j.
            parameters: Query parameters which can be used as placeholders in the `query`.

        Returns:
            A tuple consisting of execution result summary (`neo4j.ResultSummary`) and data records (`dict`) if any.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction):
            result = tx.run(
                query,
                parameters=parameters,
            )
            records = result.data()
            summary = result.consume()
            return summary, records

        with self._begin_session() as session:
            return session.execute_write(_mgt_tx)

    def execute_read(
        self,
        query: str,
        parameters: Optional[Dict[str, Any]] = None,
    ) -> Tuple[ResultSummary, List[Dict[str, Any]]]:
        """
        Runs an arbitrary "read" Cypher query with parameters.

        Args:
            query: Cypher query to run in Neo4j.
            parameters: Query parameters which can be used as placeholders in the `query`.

        Returns:
            A tuple consisting of execution result summary (`neo4j.ResultSummary`) and data records if any.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction):
            result = tx.run(
                query,
                parameters=parameters,
            )
            records = result.data()
            summary = result.consume()
            return summary, records

        with self._begin_session() as session:
            return session.execute_read(_mgt_tx)

    def update_node(self, node_label: str, doc_id: str, data: Dict[str, Any]) -> Optional[Neo4jRecord]:
        """
        Updates a given node matched by the given id (`doc_id`). Properties are mutated by `+=` operator,
        see more details in [Setting properties using map](https://neo4j.com/docs/cypher-manual/current/clauses/set/#set-setting-properties-using-map).

        Args:
            node_label: A node label to match (e.g. "Document").
            doc_id: Node id to match. Please notice the `id` used in Cypher query is not a native element id but
                the one which mapped from the [haystack.schema.Document](https://docs.haystack.deepset.ai/reference/primitives-api#document).
            data: A dictionary of data which will be set as node's properties.

        Returns:
            Updated Neo4j record data.
        """

        @self._unit_of_work()
        def _mgt_tx(tx: ManagedTransaction):
            result = tx.run(
                f"""
                MATCH ({NODE_VAR}:`{node_label}` {{id: $doc_id}})
                SET {NODE_VAR} += $doc_data
                RETURN {NODE_VAR}
                """,
                doc_id=doc_id,
                doc_data=data,
            )
            return result.single(strict=False)

        with self._begin_session() as session:
            record = session.execute_write(_mgt_tx)

        return record.data().get(NODE_VAR) if record else None

    def verify_connectivity(self):
        """
        Verifies connection to Neo4j database as per configuration and auth credentials provided.

        Raises:
            Neo4jClientError: In case connection could not be established.
        """
        try:
            self._driver.verify_connectivity()
        except Exception as err:
            raise Neo4jClientError(
                "Could not connect to Neo4j database. Please ensure that the url and provided credentials are correct"
            ) from err

    def close_driver(self) -> None:
        logger.debug("Closing driver instance created for Neo4j client to release its connection pool")
        self._driver.close()

    def _begin_session(self, **session_kwargs) -> Session:
        """
        Creates a database session with common as well as client specific configuration settings.

        Returns:
            A new `Session` object to execute transactions.
        """
        session_config = {**self._config.session_config, **session_kwargs}
        return self._driver.session(database=self._config.database, **session_config)

    def _unit_of_work(self) -> Callable:
        """
        An extended version of managed transaction decorator to pass through configuration options from
        `self._config.transaction_config`:

        - ``metadata`` - will be attached to the executing transaction
        - ``timeout`` - the transaction timeout in seconds

        See more details in [Managed Transactions](https://neo4j.com/docs/api/python-driver/current/api.html#managed-transactions-transaction-functions)

        Returns:
            A pre-configured [neo4j.unit_of_work][] decorator
        """
        return unit_of_work(
            metadata=self._config.transaction_config.get("metadata"),
            timeout=self._config.transaction_config.get("timeout"),
        )

    def _where_clause(self, filter_ast: Optional[AST]) -> Tuple[str, Dict[str, Any]]:
        """
        Converts a given filter syntax tree `filter_ast` into a Cypher query in order to build ``WHERE`` filter clause.
        Along with the query method also returns parameters used in the query to be included into final request.
        Find out more details about [WHERE clause](https://neo4j.com/docs/cypher-manual/current/clauses/where/)

        Args:
            filter_ast: Filters AST to be converted into Cypher query by \
                [Neo4jQueryConverter.convert][neo4j_haystack.metadata_filter.Neo4jQueryConverter.convert].
        Returns:
            ``WHERE`` filter clause used in filtering logic (e.g. `:::cypher WHERE doc.age > $age`) as well as
            parameters used in the clause  (e.g. `:::py {"age": 25}`)
        """
        if filter_ast:
            query, params = self._filter_converter.convert(filter_ast)
            return f"WHERE {query}", params

        # empty query and no parameters
        return ("", {})

    def _map_projection(self, skip_properties: Optional[List[str]]) -> str:
        """
        Creates a map projection Cypher query syntax with the option to skip certain properties.
        Example query would be `:::cypher {.*, embedding=null}`, where `:::py skip_properties=["embedding"]`

        See Neo4j manual about [Map Projections](https://neo4j.com/docs/cypher-manual/current/values-and-types/maps/#cypher-map-projection)

        Args:
            skip_properties: a list of property names to skip (set values to ``null``) from map projection.

        Returns:
            A map projection Cypher query with skipped properties if any.
        """
        all_props = [".*"] + ([f"{p}: null" for p in skip_properties] if skip_properties else [])
        return f"{{{','.join(all_props)}}}"

    def _vector_store_index_info(self, record: Record) -> VectorStoreIndexInfo:
        """
        Creates a dataclass from a data record returned by a ``SHOW INDEXES`` Cypher query output.

        See Neo4j manual for [SHOW INDEXES](https://neo4j.com/docs/cypher-manual/current/indexes-for-search-performance/#indexes-list-indexes)

        Args:
            record: A Neo4j record containing ``SHOW INDEXES`` output.

        Returns:
            Custom dataclass with vector index information.
        """
        return VectorStoreIndexInfo(
            index_name=record["name"],
            node_label=record["labelsOrTypes"][0],
            property_key=record["properties"][0],
            dimensions=record["options"]["indexConfig"]["vector.dimensions"],
            similarity_function=record["options"]["indexConfig"]["vector.similarity_function"],
        )

delete_nodes ¤

delete_nodes(node_label: str, filter_ast: Optional[AST] = None) -> None

Deletes nodes with with given label and filters using DELETE Cypher clause.

Parameters:

  • node_label (str) –

    The name of the label to delete (e.g. "Document")

  • filter_ast (Optional[AST], default: None ) –

    Metadata filters to delete only specific nodes which match filtering conditions.

Source code in src/neo4j_haystack/client/neo4j_client.py
def delete_nodes(self, node_label: str, filter_ast: Optional[AST] = None) -> None:
    """
    Deletes nodes with with given label and filters using [DELETE](https://neo4j.com/docs/cypher-manual/current/clauses/delete/)
        Cypher clause.

    Args:
        node_label: The name of the label to delete (e.g. ``"Document"``)
        filter_ast: Metadata filters to delete only specific nodes which match filtering conditions.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction) -> None:
        where_clause, where_params = self._where_clause(filter_ast)
        tx.run(
            f"""
            MATCH ({NODE_VAR}:`{node_label}`)
            {where_clause}
            DETACH DELETE {NODE_VAR}
            """,
            parameters={**where_params},
        )

    with self._begin_session() as session:
        session.execute_write(_mgt_tx)

create_index ¤

create_index(
    index_name: str,
    label: str,
    property_key: str,
    dimension: int,
    similarity_function: SimilarityFunction,
) -> None

Creates a new vector index in database for a given node label and vector specific attributes (e.g. dimension, similarity function etc). See documentation for the index creation procedure db.index.vector.createNodeIndex

Parameters:

  • index_name (str) –

    The unique name of the index.

  • label (str) –

    The node label to be indexed (e.g. "Document").

  • property_key (str) –

    The property key of a node which contains embedding values.

  • dimension (int) –

    Vector embedding dimension (must be between 1 and 2048 inclusively).

  • similarity_function (SimilarityFunction) –

    case-insensitive values for the vector similarity function: cosine or euclidean.

Source code in src/neo4j_haystack/client/neo4j_client.py
def create_index(
    self,
    index_name: str,
    label: str,
    property_key: str,
    dimension: int,
    similarity_function: SimilarityFunction,
) -> None:
    """
    Creates a new vector index in database for a given node label and vector specific attributes (e.g. dimension,
    similarity function etc). See documentation for the index creation procedure \
    [db.index.vector.createNodeIndex](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_createNodeIndex)

    Args:
        index_name: The unique name of the index.
        label: The node label to be indexed (e.g. ``"Document"``).
        property_key: The property key of a node which contains embedding values.
        dimension: Vector embedding dimension (must be between 1 and 2048 inclusively).
        similarity_function: case-insensitive values for the vector similarity function:
            ``cosine`` or ``euclidean``.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction) -> None:
        tx.run(
            """
            CALL db.index.vector.createNodeIndex(
                $index_name,
                $label,
                $property_key,
                toInteger($vector_dimension),
                $similarity_function
            )
            """,
            index_name=index_name,
            label=label,
            property_key=property_key,
            vector_dimension=dimension,
            similarity_function=similarity_function,
        )

    with self._begin_session() as session:
        session.execute_write(_mgt_tx)

retrieve_vector_index ¤

retrieve_vector_index(
    index_name: str, node_label: str, property_key: str
) -> Optional[VectorStoreIndexInfo]

Retrieves information about existing vector index.

For more details and an example query on how to obtain existing indexes see Query a vector index.

Parameters:

  • index_name (str) –

    The name of the vector index to retrieve.

  • node_label (str) –

    The label of the node configured as prt of vector index setup.

  • property_key (str) –

    The property key configured as part of vector index setup.

Raises:

  • Neo4jClientError

    If more than one index found matching search criteria (same index name OR label+property combination).

Returns:

Source code in src/neo4j_haystack/client/neo4j_client.py
def retrieve_vector_index(
    self,
    index_name: str,
    node_label: str,
    property_key: str,
) -> Optional[VectorStoreIndexInfo]:
    """
    Retrieves information about existing vector index.

    For more details and an example query on how to obtain existing indexes see \
    [Query a vector index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query).

    Args:
        index_name: The name of the vector index to retrieve.
        node_label: The label of the node configured as prt of vector index setup.
        property_key: The property key configured as part of vector index setup.

    Raises:
        Neo4jClientError: If more than one index found matching search criteria (same index name OR
            label+property combination).

    Returns:
        Data retrieved from the query execution or `None` if index was not found.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction) -> List[Record]:
        result = tx.run(
            """
            SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options
            WHERE type = 'VECTOR' AND
            (name = $index_name OR (labelsOrTypes[0] = $node_label AND properties[0] = $property_key))
            RETURN name, labelsOrTypes, properties, options
            """,
            index_name=index_name,
            node_label=node_label,
            property_key=property_key,
        )

        return list(result)

    with self._begin_session() as session:
        found_indexes = session.execute_write(_mgt_tx)

    if len(found_indexes) > 1:
        raise Neo4jClientError(
            "Failed to retrieve vector index from Neo4j."
            "There were several indexes found with a given search criteria: "
            f"$index_name='{index_name}' OR ($node_label='{node_label}' AND $property_key='{property_key}'). "
            "Please make sure the Neo4jDocumentStore points to an unambiguous vector index"
        )

    return self._vector_store_index_info(found_indexes[0]) if found_indexes else None

create_index_if_missing ¤

create_index_if_missing(
    index_name: str,
    label: str,
    property_key: str,
    dimension: int,
    similarity_function: SimilarityFunction,
)

Creates a vector index in case it does not exist in database. Uses same parameters as create_index method.

Source code in src/neo4j_haystack/client/neo4j_client.py
def create_index_if_missing(
    self,
    index_name: str,
    label: str,
    property_key: str,
    dimension: int,
    similarity_function: SimilarityFunction,
):
    """
    Creates a vector index in case it does not exist in database.
    Uses same parameters as [create_index][neo4j_haystack.client.neo4j_client.Neo4jClient.create_index] \
        method.
    """

    existing_index = self.retrieve_vector_index(index_name, label, property_key)

    if not existing_index:
        logger.debug("Creating a new index(%s) as it is not present in the configured Neo4j database", index_name)
        self.create_index(index_name, label, property_key, dimension, similarity_function)

delete_index ¤

delete_index(index_name: str) -> None

Removes index from Neo4j database.

See Cypher manual on Drop vector indexes

Parameters:

  • index_name (str) –

    The name of the index to delete.

Source code in src/neo4j_haystack/client/neo4j_client.py
def delete_index(self, index_name: str) -> None:
    """
    Removes index from Neo4j database.

    See Cypher manual on [Drop vector indexes](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-drop)

    Args:
        index_name: The name of the index to delete.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction) -> None:
        tx.run(f"DROP INDEX `{index_name}`")

    with self._begin_session() as session:
        session.execute_write(_mgt_tx)

update_embedding ¤

update_embedding(
    node_label: str, embedding_field: str, records: List[Dict[str, Any]]
) -> None

Updates embedding on a number of Document nodes. It uses db.create.setNodeVectorProperty() procedure as a recommended update method. See more details in Set a vector property on a node

Parameters:

  • node_label (str) –

    A node label to match (e.g. "Document").

  • embedding_field (str) –

    The name of the embedding field which stores embeddings (of type LIST<FLOAT>) as part node properties.

  • records (List[Dict[str, Any]]) –

    A list dictionary objects following the structure:

        [{
            "id": "doc_id1", # id of the Document (node) to update
            embedding_field: [0.8, 0.9, ...] # Embedding vector
        }]
    

Source code in src/neo4j_haystack/client/neo4j_client.py
def update_embedding(self, node_label: str, embedding_field: str, records: List[Dict[str, Any]]) -> None:
    """
    Updates embedding on a number of ``Document`` nodes. It uses ``db.create.setNodeVectorProperty()`` procedure as
    a recommended update method. See more details in [Set a vector property on a node](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-set)

    Args:
        node_label: A node label to match (e.g. ``"Document"``).
        embedding_field: The name of the embedding field which stores embeddings (of type ``LIST<FLOAT>``) as part
            node properties.
        records: A list dictionary objects following the structure:
            ```python
                [{
                    "id": "doc_id1", # id of the Document (node) to update
                    embedding_field: [0.8, 0.9, ...] # Embedding vector
                }]
            ```
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction) -> None:
        tx.run(
            f"""
            WITH $records AS batch
            UNWIND batch as row
            MATCH ({NODE_VAR}:`{node_label}` {{id: row.id}})
            CALL db.create.setNodeVectorProperty({NODE_VAR}, '{embedding_field}', row.{embedding_field})
            RETURN {NODE_VAR}
            """,
            records=records,
        )

    with self._begin_session() as session:
        session.execute_write(_mgt_tx)

merge_nodes ¤

merge_nodes(
    node_label: str, embedding_field: str, records: List[Neo4jRecord]
) -> ResultSummary

Creates or updates a node in neo4j representing a Document with all properties. Nodes are matched by "id", if not found a new node will be created. See the following manuals:

Parameters:

  • node_label (str) –

    The label of the node to match (e.g. "Document").

  • embedding_field (str) –

    The name of the embedding field which stores embeddings (of type LIST<FLOAT>) as part of node properties. Embeddings (if present) will be updated/set by db.create.setNodeVectorProperty() procedure - embedding_field is excluded from SET Cypher clause by using map projections.

  • records (List[Neo4jRecord]) –

    A list of Documents converted to dictionaries, with meta attributes included.

Source code in src/neo4j_haystack/client/neo4j_client.py
def merge_nodes(self, node_label: str, embedding_field: str, records: List[Neo4jRecord]) -> ResultSummary:
    """
    Creates or updates a node in neo4j representing a Document with all properties. Nodes are matched by "id",
    if not found a new node will be created. See the following manuals:

    - [MERGE clause](https://neo4j.com/docs/cypher-manual/current/clauses/merge/)
    - [Settings properties using a map](https://neo4j.com/docs/cypher-manual/current/clauses/set/#set-setting-properties-using-map)
    - [db.create.setNodeVectorProperty](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_create_setNodeVectorProperty)

    Args:
        node_label: The label of the node to match (e.g. "Document").
        embedding_field: The name of the embedding field which stores embeddings (of type ``LIST<FLOAT>``) as part
            of node properties. Embeddings (if present) will be updated/set by ``db.create.setNodeVectorProperty()``
            procedure - `embedding_field` is excluded from ``SET`` Cypher clause by using map projections.
        records: A list of [Documents](https://docs.haystack.deepset.ai/reference/primitives-api#document) \
            converted to dictionaries, with ``meta`` attributes included.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction):
        result = tx.run(
            f"""
            WITH $records AS batch
            UNWIND batch as row
            MERGE ({NODE_VAR}:`{node_label}` {{id: row.id}})
            SET {NODE_VAR} += row{{.*, {embedding_field}: null}}
            WITH {NODE_VAR}, row
            CALL {{ WITH {NODE_VAR}, row
                MATCH({NODE_VAR}:`{node_label}` {{id: row.id}}) WHERE row.embedding IS NOT NULL
                CALL db.create.setNodeVectorProperty({NODE_VAR}, '{embedding_field}', row.{embedding_field})
            }}
            """,
            records=records,
        )
        summary = result.consume()
        return summary

    with self._begin_session() as session:
        return session.execute_write(_mgt_tx)

count_nodes ¤

count_nodes(node_label: str, filter_ast: Optional[AST] = None) -> int

Counts number of nodes matching given label and optional filters.

Parameters:

  • node_label (str) –

    The label of the node to match (e.g. "Document").

  • filter_ast (Optional[AST], default: None ) –

    The filter syntax tree (parsed metadata filter) to narrow down counted results.

Returns:

  • int

    Number of found nodes.

Source code in src/neo4j_haystack/client/neo4j_client.py
def count_nodes(self, node_label: str, filter_ast: Optional[AST] = None) -> int:
    """
    Counts number of nodes matching given label and optional filters.

    Args:
        node_label: The label of the node to match (e.g. ``"Document"``).
        filter_ast: The filter syntax tree (parsed metadata filter) to narrow down counted results.

    Returns:
        Number of found nodes.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction):
        where_clause, where_params = self._where_clause(filter_ast)
        result = tx.run(
            f"""
            MATCH ({NODE_VAR}:`{node_label}`)
            {where_clause}
            RETURN count(*) as count
            """,
            parameters={**where_params},
        )
        return result.single(strict=True).value()

    with self._begin_session() as session:
        return session.execute_read(_mgt_tx)

find_nodes ¤

find_nodes(
    node_label: str,
    filter_ast: Optional[AST] = None,
    skip_properties: Optional[List[str]] = None,
    fetch_size: int = 1000,
) -> Generator[Neo4jRecord, None, None]

Search for nodes matching a given label and metadata filters.

Parameters:

  • node_label (str) –

    The label of the nodes to match (e.g. "Document").

  • filter_ast (Optional[AST], default: None ) –

    The filter syntax tree (parsed metadata filter) for search.

  • skip_properties (Optional[List[str]], default: None ) –

    Properties we would like not to return as part of data payload. Is uses map projection Cypher syntax, e.g. doc{.*, embedding: null} - such construct will make sure embedding is not returned back in results.

  • fetch_size (int, default: 1000 ) –

    Controls how many records are fetched at once from the database which helps with batching process.

Returns:

  • None

    Found records matching search criteria.

Source code in src/neo4j_haystack/client/neo4j_client.py
def find_nodes(
    self,
    node_label: str,
    filter_ast: Optional[AST] = None,
    skip_properties: Optional[List[str]] = None,
    fetch_size: int = 1000,
) -> Generator[Neo4jRecord, None, None]:
    """
    Search for nodes matching a given label and metadata filters.

    Args:
        node_label: The label of the nodes to match (e.g. ``"Document"``).
        filter_ast: The filter syntax tree (parsed metadata filter) for search.
        skip_properties: Properties we would like not to return as part of data payload. Is uses map projection
            Cypher syntax, e.g. `:::cypher doc{.*, embedding: null}` - such construct will make sure ``embedding``
            is not returned back in results.
        fetch_size: Controls how many records are fetched at once from the database which helps with batching
            process.

    Returns:
        Found records matching search criteria.
    """
    where_clause, where_params = self._where_clause(filter_ast)
    query = f"""
        MATCH ({NODE_VAR}:`{node_label}`)
        {where_clause}
        RETURN {NODE_VAR}{self._map_projection(skip_properties)}
        """

    for record in self.query_nodes(query=query, parameters={**where_params}, fetch_size=fetch_size):
        yield cast(Neo4jRecord, record.data().get(NODE_VAR))

query_nodes ¤

query_nodes(
    query: str,
    parameters: Optional[Dict[str, Any]] = None,
    fetch_size: int = 1000,
) -> Generator[Record, None, None]

Runs a given Cypher query. The implementation is based on Unmanaged Transactions for greater control and possibility to yield results as soon as those are fetched from database. The Neo4j python driver internally manages a buffer which replenished while records are being consumed thus making sure we do not store all fetched records in memory. That greatly simplifies batching mechanism as it is implemented by the buffer. See more details about how python driver implements Explicit/Unmanaged Transactions

Note

Please notice results are yielded while read transaction is still open. That should impact your choice of transaction timeout setting, see Neo4jClientConfig.

Parameters:

  • query (str) –

    Cypher query to run in Neo4j.

  • parameters (Optional[Dict[str, Any]], default: None ) –

    Query parameters which can be used as placeholders in the query.

  • fetch_size (int, default: 1000 ) –

    Controls how many records are fetched at once from the database which helps with batching process.

Returns:

  • None

    Records containing data specified in RETURN Cypher query statement.

Source code in src/neo4j_haystack/client/neo4j_client.py
def query_nodes(
    self,
    query: str,
    parameters: Optional[Dict[str, Any]] = None,
    fetch_size: int = 1000,
) -> Generator[Record, None, None]:
    """
    Runs a given Cypher `query`. The implementation is based on ``Unmanaged Transactions``
    for greater control and possibility to ``yield`` results as soon as those are fetched from database. The Neo4j
    python driver internally manages a buffer which replenished while records are being consumed thus making sure we
    do not store all fetched records in memory. That greatly simplifies batching mechanism as it is implemented by
    the buffer. See more details about how python driver implements \
    [Explicit/Unmanaged Transactions](https://neo4j.com/docs/api/python-driver/current/api.html#explicit-transactions-unmanaged-transactions)

    Note:
        Please notice results are yielded while read transaction is still open. That should impact your choice of
        transaction timeout setting, see \
            [Neo4jClientConfig][neo4j_haystack.client.neo4j_client.Neo4jClientConfig].

    Args:
        query: Cypher query to run in Neo4j.
        parameters: Query parameters which can be used as placeholders in the `query`.
        fetch_size: Controls how many records are fetched at once from the database which helps with batching
            process.

    Returns:
        Records containing data specified in ``RETURN`` Cypher query statement.
    """
    with self._begin_session(fetch_size=fetch_size) as session:
        with session.begin_transaction(
            metadata=self._config.transaction_config.get("metadata"),
            timeout=self._config.transaction_config.get("timeout"),
        ) as tx:
            try:
                result: Result = tx.run(
                    query,
                    parameters=parameters,
                )
                yield from result
            finally:
                tx.close()

query_embeddings ¤

query_embeddings(
    index: str,
    top_k: int,
    embedding: List[float],
    filter_ast: Optional[AST] = None,
    skip_properties: Optional[List[str]] = None,
    vector_top_k: Optional[int] = None,
) -> List[Neo4jRecord]

Query a vector index and apply filtering using WHERE clause on results returned by vector search. See the following documentation for more details:

Parameters:

  • index (str) –

    Refers to the unique name of the vector index to query.

  • top_k (int) –

    Number of results to return from vector search.

  • embedding (List[float]) –

    The query vector (a LIST<FLOAT>) in which to search for the neighborhood.

  • filter_ast (Optional[AST], default: None ) –

    Additional filters translated into WHERE Cypher clause by Neo4jQueryConverter

  • skip_properties (Optional[List[str]], default: None ) –

    Properties we would like not to return as part of data payload. Is uses map projection Cypher syntax, e.g. doc{.*, embedding: null} - such construct will make sure embedding is not returned back in results.

  • vector_top_k (Optional[int], default: None ) –

    If provided vector_top_k is used instead of top_k in order to increase number of results (nearest neighbors) from vector search. It makes sense when filters (filter_ast) could further narrow down vector search result. Only top_k number of records will be returned back thus vector_top_k should be preferably greater than top_k.

Returns: An ordered by score top_k nodes found in vector search which are optionally filtered using WHERE clause.

Source code in src/neo4j_haystack/client/neo4j_client.py
def query_embeddings(
    self,
    index: str,
    top_k: int,
    embedding: List[float],
    filter_ast: Optional[AST] = None,
    skip_properties: Optional[List[str]] = None,
    vector_top_k: Optional[int] = None,
) -> List[Neo4jRecord]:
    """
    Query a vector index and apply filtering using `WHERE` clause on results returned by vector search.
    See the following documentation for more details:

    - [Query a vector index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/#indexes-vector-query)
    - [db.index.vector.queryNodes()](https://neo4j.com/docs/operations-manual/5/reference/procedures/#procedure_db_index_vector_queryNodes)

    Args:
        index: Refers to the unique name of the vector index to query.
        top_k: Number of results to return from vector search.
        embedding: The query vector (a ``LIST<FLOAT>``) in which to search for the neighborhood.
        filter_ast: Additional filters translated into `WHERE` Cypher clause by \
            [Neo4jQueryConverter][neo4j_haystack.metadata_filter.Neo4jQueryConverter]
        skip_properties: Properties we would like **not** to return as part of data payload. Is uses map projection
            Cypher syntax, e.g. `:::cypher doc{.*, embedding: null}` - such construct will make sure `embedding` is
            not returned back in results.
        vector_top_k: If provided `vector_top_k` is used instead of `top_k` in order to increase number of
            results (nearest neighbors) from vector search. It makes sense when filters (`filter_ast`) could
            further narrow down vector search result. Only `top_k` number of records will be returned back thus
            `vector_top_k` should be preferably greater than `top_k`.
    Returns:
        An ordered by score `top_k` nodes found in vector search which are optionally filtered using
            ``WHERE`` clause.
    """

    score_property = "score"

    if vector_top_k and vector_top_k < top_k:
        logger.warning(
            "Make sure 'vector_top_k'(=%s) is greater than 'top_k'(=%s) parameter. Using 'top_k' instead",
            vector_top_k,
            top_k,
        )
        vector_top_k = top_k

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction) -> List[Record]:
        where_clause, where_params = self._where_clause(filter_ast)
        result = tx.run(
            f"""
            CALL db.index.vector.queryNodes($index, $vector_top_k, $embedding)
            YIELD node as {NODE_VAR}, {score_property}
            MATCH ({NODE_VAR}) {where_clause}
            RETURN {NODE_VAR}{self._map_projection(skip_properties)}, {score_property}
            ORDER BY {score_property} DESC LIMIT $top_k
            """,
            parameters={
                "index": index,
                "top_k": top_k,
                "embedding": embedding,
                "vector_top_k": vector_top_k or top_k,
                **where_params,
            },
        )
        return list(result)

    with self._begin_session() as session:
        records = session.execute_read(_mgt_tx)

    return [{**record.value(NODE_VAR), score_property: record.value("score")} for record in records]

execute_write ¤

execute_write(
    query: str, parameters: Optional[Dict[str, Any]] = None
) -> Tuple[ResultSummary, List[Dict[str, Any]]]

Runs an arbitrary write Cypher query with parameters.

Parameters:

  • query (str) –

    Cypher query to run in Neo4j.

  • parameters (Optional[Dict[str, Any]], default: None ) –

    Query parameters which can be used as placeholders in the query.

Returns:

Source code in src/neo4j_haystack/client/neo4j_client.py
def execute_write(
    self,
    query: str,
    parameters: Optional[Dict[str, Any]] = None,
) -> Tuple[ResultSummary, List[Dict[str, Any]]]:
    """
    Runs an arbitrary write Cypher query with parameters.

    Args:
        query: Cypher query to run in Neo4j.
        parameters: Query parameters which can be used as placeholders in the `query`.

    Returns:
        A tuple consisting of execution result summary (`neo4j.ResultSummary`) and data records (`dict`) if any.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction):
        result = tx.run(
            query,
            parameters=parameters,
        )
        records = result.data()
        summary = result.consume()
        return summary, records

    with self._begin_session() as session:
        return session.execute_write(_mgt_tx)

execute_read ¤

execute_read(
    query: str, parameters: Optional[Dict[str, Any]] = None
) -> Tuple[ResultSummary, List[Dict[str, Any]]]

Runs an arbitrary "read" Cypher query with parameters.

Parameters:

  • query (str) –

    Cypher query to run in Neo4j.

  • parameters (Optional[Dict[str, Any]], default: None ) –

    Query parameters which can be used as placeholders in the query.

Returns:

Source code in src/neo4j_haystack/client/neo4j_client.py
def execute_read(
    self,
    query: str,
    parameters: Optional[Dict[str, Any]] = None,
) -> Tuple[ResultSummary, List[Dict[str, Any]]]:
    """
    Runs an arbitrary "read" Cypher query with parameters.

    Args:
        query: Cypher query to run in Neo4j.
        parameters: Query parameters which can be used as placeholders in the `query`.

    Returns:
        A tuple consisting of execution result summary (`neo4j.ResultSummary`) and data records if any.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction):
        result = tx.run(
            query,
            parameters=parameters,
        )
        records = result.data()
        summary = result.consume()
        return summary, records

    with self._begin_session() as session:
        return session.execute_read(_mgt_tx)

update_node ¤

update_node(
    node_label: str, doc_id: str, data: Dict[str, Any]
) -> Optional[Neo4jRecord]

Updates a given node matched by the given id (doc_id). Properties are mutated by += operator, see more details in Setting properties using map.

Parameters:

  • node_label (str) –

    A node label to match (e.g. "Document").

  • doc_id (str) –

    Node id to match. Please notice the id used in Cypher query is not a native element id but the one which mapped from the haystack.schema.Document.

  • data (Dict[str, Any]) –

    A dictionary of data which will be set as node's properties.

Returns:

Source code in src/neo4j_haystack/client/neo4j_client.py
def update_node(self, node_label: str, doc_id: str, data: Dict[str, Any]) -> Optional[Neo4jRecord]:
    """
    Updates a given node matched by the given id (`doc_id`). Properties are mutated by `+=` operator,
    see more details in [Setting properties using map](https://neo4j.com/docs/cypher-manual/current/clauses/set/#set-setting-properties-using-map).

    Args:
        node_label: A node label to match (e.g. "Document").
        doc_id: Node id to match. Please notice the `id` used in Cypher query is not a native element id but
            the one which mapped from the [haystack.schema.Document](https://docs.haystack.deepset.ai/reference/primitives-api#document).
        data: A dictionary of data which will be set as node's properties.

    Returns:
        Updated Neo4j record data.
    """

    @self._unit_of_work()
    def _mgt_tx(tx: ManagedTransaction):
        result = tx.run(
            f"""
            MATCH ({NODE_VAR}:`{node_label}` {{id: $doc_id}})
            SET {NODE_VAR} += $doc_data
            RETURN {NODE_VAR}
            """,
            doc_id=doc_id,
            doc_data=data,
        )
        return result.single(strict=False)

    with self._begin_session() as session:
        record = session.execute_write(_mgt_tx)

    return record.data().get(NODE_VAR) if record else None

verify_connectivity ¤

verify_connectivity()

Verifies connection to Neo4j database as per configuration and auth credentials provided.

Raises:

Source code in src/neo4j_haystack/client/neo4j_client.py
def verify_connectivity(self):
    """
    Verifies connection to Neo4j database as per configuration and auth credentials provided.

    Raises:
        Neo4jClientError: In case connection could not be established.
    """
    try:
        self._driver.verify_connectivity()
    except Exception as err:
        raise Neo4jClientError(
            "Could not connect to Neo4j database. Please ensure that the url and provided credentials are correct"
        ) from err

_begin_session ¤

_begin_session(**session_kwargs) -> Session

Creates a database session with common as well as client specific configuration settings.

Returns:

  • Session

    A new Session object to execute transactions.

Source code in src/neo4j_haystack/client/neo4j_client.py
def _begin_session(self, **session_kwargs) -> Session:
    """
    Creates a database session with common as well as client specific configuration settings.

    Returns:
        A new `Session` object to execute transactions.
    """
    session_config = {**self._config.session_config, **session_kwargs}
    return self._driver.session(database=self._config.database, **session_config)

_unit_of_work ¤

_unit_of_work() -> Callable

An extended version of managed transaction decorator to pass through configuration options from self._config.transaction_config:

  • metadata - will be attached to the executing transaction
  • timeout - the transaction timeout in seconds

See more details in Managed Transactions

Returns:

Source code in src/neo4j_haystack/client/neo4j_client.py
def _unit_of_work(self) -> Callable:
    """
    An extended version of managed transaction decorator to pass through configuration options from
    `self._config.transaction_config`:

    - ``metadata`` - will be attached to the executing transaction
    - ``timeout`` - the transaction timeout in seconds

    See more details in [Managed Transactions](https://neo4j.com/docs/api/python-driver/current/api.html#managed-transactions-transaction-functions)

    Returns:
        A pre-configured [neo4j.unit_of_work][] decorator
    """
    return unit_of_work(
        metadata=self._config.transaction_config.get("metadata"),
        timeout=self._config.transaction_config.get("timeout"),
    )

_where_clause ¤

_where_clause(filter_ast: Optional[AST]) -> Tuple[str, Dict[str, Any]]

Converts a given filter syntax tree filter_ast into a Cypher query in order to build WHERE filter clause. Along with the query method also returns parameters used in the query to be included into final request. Find out more details about WHERE clause

Parameters:

Returns: WHERE filter clause used in filtering logic (e.g. WHERE doc.age > $age) as well as parameters used in the clause (e.g. {"age": 25})

Source code in src/neo4j_haystack/client/neo4j_client.py
def _where_clause(self, filter_ast: Optional[AST]) -> Tuple[str, Dict[str, Any]]:
    """
    Converts a given filter syntax tree `filter_ast` into a Cypher query in order to build ``WHERE`` filter clause.
    Along with the query method also returns parameters used in the query to be included into final request.
    Find out more details about [WHERE clause](https://neo4j.com/docs/cypher-manual/current/clauses/where/)

    Args:
        filter_ast: Filters AST to be converted into Cypher query by \
            [Neo4jQueryConverter.convert][neo4j_haystack.metadata_filter.Neo4jQueryConverter.convert].
    Returns:
        ``WHERE`` filter clause used in filtering logic (e.g. `:::cypher WHERE doc.age > $age`) as well as
        parameters used in the clause  (e.g. `:::py {"age": 25}`)
    """
    if filter_ast:
        query, params = self._filter_converter.convert(filter_ast)
        return f"WHERE {query}", params

    # empty query and no parameters
    return ("", {})

_map_projection ¤

_map_projection(skip_properties: Optional[List[str]]) -> str

Creates a map projection Cypher query syntax with the option to skip certain properties. Example query would be {.*, embedding=null}, where skip_properties=["embedding"]

See Neo4j manual about Map Projections

Parameters:

  • skip_properties (Optional[List[str]]) –

    a list of property names to skip (set values to null) from map projection.

Returns:

  • str

    A map projection Cypher query with skipped properties if any.

Source code in src/neo4j_haystack/client/neo4j_client.py
def _map_projection(self, skip_properties: Optional[List[str]]) -> str:
    """
    Creates a map projection Cypher query syntax with the option to skip certain properties.
    Example query would be `:::cypher {.*, embedding=null}`, where `:::py skip_properties=["embedding"]`

    See Neo4j manual about [Map Projections](https://neo4j.com/docs/cypher-manual/current/values-and-types/maps/#cypher-map-projection)

    Args:
        skip_properties: a list of property names to skip (set values to ``null``) from map projection.

    Returns:
        A map projection Cypher query with skipped properties if any.
    """
    all_props = [".*"] + ([f"{p}: null" for p in skip_properties] if skip_properties else [])
    return f"{{{','.join(all_props)}}}"

_vector_store_index_info ¤

_vector_store_index_info(record: Record) -> VectorStoreIndexInfo

Creates a dataclass from a data record returned by a SHOW INDEXES Cypher query output.

See Neo4j manual for SHOW INDEXES

Parameters:

  • record (Record) –

    A Neo4j record containing SHOW INDEXES output.

Returns:

Source code in src/neo4j_haystack/client/neo4j_client.py
def _vector_store_index_info(self, record: Record) -> VectorStoreIndexInfo:
    """
    Creates a dataclass from a data record returned by a ``SHOW INDEXES`` Cypher query output.

    See Neo4j manual for [SHOW INDEXES](https://neo4j.com/docs/cypher-manual/current/indexes-for-search-performance/#indexes-list-indexes)

    Args:
        record: A Neo4j record containing ``SHOW INDEXES`` output.

    Returns:
        Custom dataclass with vector index information.
    """
    return VectorStoreIndexInfo(
        index_name=record["name"],
        node_label=record["labelsOrTypes"][0],
        property_key=record["properties"][0],
        dimensions=record["options"]["indexConfig"]["vector.dimensions"],
        similarity_function=record["options"]["indexConfig"]["vector.similarity_function"],
    )